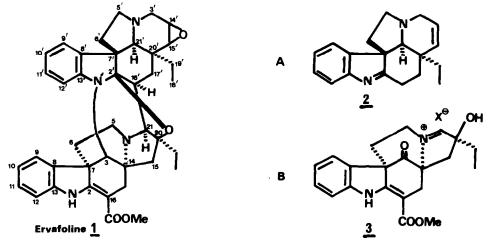
DIMERIC INDOLE ALKALOIDS OF A NEW TYPE A SYNTHETIC APPROACH TO THE ERVAFOLINE SERIES

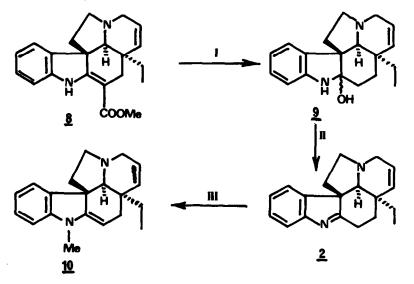

A. HENRIQUES and H.-P. HUSSON *

Institut de Chimie des Substances Naturelles C.N.R.S. - F 91190 Gif-sur-Yvette

<u>Summary</u>: A synthetic approach towards the dimeric ervafoline indole alkaloids has been achieved <u>via</u> a route inspired from a biogenetic hypothesis.

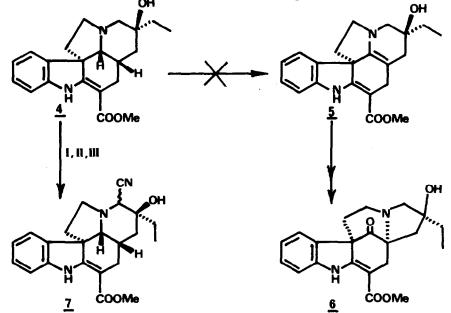
Isolation of ervafoline 1, a dimeric indole alkaloid of a new type, from Stenosolen heterophyllus (Apocynaceae)¹ raises the problem of its biogenesis and of its synthesis. In order to identify the unknown alkaloids of the same series and to ascertain a biogenetic hypothesis¹ we have undertaken a biomimetic type synthetic approach to the ervafoline series.

Ervafoline <u>1</u> possesses the feature of having three bonds between the two constitutive moieties A and B. The C-16', C-21 bond can be formed initially by an enamine-iminium salt condensation between <u>2</u> and <u>3</u> and the C-20-0, C-2' bond formation follows by addition of the tertiary alcohol onto the resulting $N'^+=C-2'$ iminium salt (scheme 1). We can envisage the contraction of the piperidine ring of the B moiety via an aziridinium ion that is opened during the formation of the third bond or by nucleophilic attack of an hydroxylion.


Scheme 1

The upper moiety A of ervafoline <u>l</u> can be considered as derived from tabersonine $\underline{8}^2$ and the lower one B from 20-epi-pandoline $\underline{4}^3$, an alkaloid found in the same plant⁴.

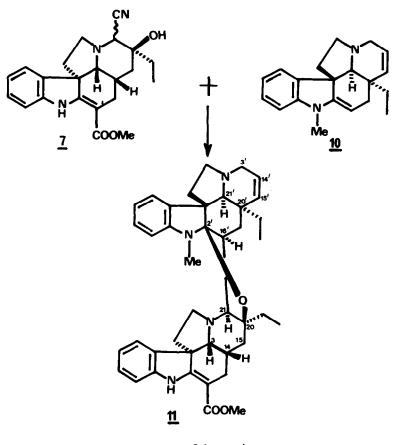
The required reactive moieties for achieving the coupling reaction, according to the above-mentioned proposal, are the derivatives $\frac{2}{2}$ and $\frac{3}{2}$ (scheme 1) or their equivalents.


The imine 2 can be prepared by decarboxylation of tabersonine 8^{15} (scheme 2) according to a known procedure³⁰ (HCl 10N, reflux, 10 min., under nitrogen). However, we have

isolated in high yield a mixture of the carbinolamine 9 $(2/3)^5$ and the expected imine 2 $(1/3)^5$. Dehydration of 9 into 2 was achieved in boiling benzene in the presence of TsOH. In order to direct the reactivity of 2 as an enamine and to suppress side reactions, it was treated in THF with CH₃I in the presence of NaH to afford the N-methyl derivative 10^7 .

Scheme 2 : Reagents : I, HC1 10 N, Δ , 10 mn, N₂ ; II, C₆H₆, TsOH, Δ , lh. ; III, NaH, THF, CH₃I, 4h., r.t.

The formation of the spiro derivative 3 could be imagined from the enamine 5 derived from 20-epi-pandoline 4. Ring contraction of 5 by bromination and treatment of the resultant bromo iminium with NaOH⁸⁻¹⁰ would give 6 a precursor of 3. Unfortunately, a modified Polonovski reaction¹¹ performed on the N-oxyde of 20-epi-pandoline 4 did not lead to the required enamine 5 which could have been transformed into 6 (Scheme 3).



Scheme 3 : Reagents : I, H₂O₂, CHCl₃-EtOH (50:50), 50°, 24h ; C|Pd 10 % ; II, (CF₃CO)₂O, CH₂Cl₂, 0°, 2h ; III, KCN, H₂O, pH4, 15 mn.

Instead, after trapping the resultant sensitive iminium ion with cyanide¹², the α cyano enamine 7 was obtained in 30 % yield. The structure of 7 was assigned on consideration of its spectral data¹³, in particular the presence of the H-21 α to nitrile group as a singlet at δ 4.05 ppm in the ¹H NMR spectrum. It has not been possible to isolate any other oxidation products.

The occurrence of dimers of unknown structures, along with ervafoline 1 in the same plant⁴, prompted us to use the intermediate 7, in coupling reactions to synthesize natural products or biogenetic intermediates having only two bonds between the two moieties.

We have previously demonstrated that α -cyano piperidines are equivalent and stable forms of iminium salts¹². Thus, 7 is able to react electrophically with the enamine <u>10</u>. A mixture of 7 (0.15 mmole) and <u>10</u> (0.15 mmole) was allowed to react in a THF solution, in the presence of AgBF₄ (0.15 mmole)¹² under a nitrogen atmosphere for 4 hours in the dark at room temperature. From the reaction mixture the dimer <u>11</u> (21 mg, Y : 20 %) was isolated on silica gel preparative tlc. Its structure was inferred from its spectral data, in particular from a complete interpretation of ¹³C NMR spectrum¹⁴.

Scheme 4

The proposed stereochemistry at C-2' and C-16', as depicted on scheme 4, is the same as in the natural product and appears to be the most likely; it is that which requires the smallest steric interactions between the two reactive species during its formation.

The achievement of the synthesis of <u>ll</u> demonstrates the probability that the mode of biogenetic formation of two of the three bonds in ervafoline <u>l</u> is that which was pre-viously proposed.

REFERENCES AND NOTES

- 1 A. HENRIQUES, C. KAN-FAN, A. AHOND, C. RICHE and H.-P. HUSSON, <u>Tetrahedron Lett.</u>, 1978, 1707-1710.
- 2 The absolute configuration of 1 deduced from X-Ray analysis, if one admits that the lower moiety B is derived from 20-epi-pandoline 4 whose absolute configuration is known³⁰.
- 3 a) M.-J. HOIZEY, C. SIGAUT, L. LE MEN-OLIVIER, J. LEVY and J. LE MEN, <u>Tetrahedron Lett.</u>, 1974, 1601-1604; b) J. BRUNETON, A. CAVE, E. W. HAGAMAN, N. KUNESCH and E. WENKERT, Tetrahedron Lett., 1976, 3567-3570.
- 4 A. HENRIQUES, C. KAN-FAN, Y. JASOR, C. MORETTI and H.-P. HUSSON, unpublished results.
- 5 9 : amorphous ; MS m/e (relative intensity) : 278 (M-18, 100) ; UV λ_{max}^{EtOH} (qualitative) : 242, 298 nm;¹³C NMR (CDCl₃, 15.08 MHz, TMS δ = 0) : 32.3, 32.4 (2t C-6, C-16 carbons not attributed) 94 (s C-2).
- 6 6 : amorphous ; MS m/e (relative intensity) : M⁺· 278 (100 %) ; UV λ^{EtOH}_{max} (qualitative): 224, 260 nm;¹³C NMR (CDC1₃, 15.08 MHz, TMS δ = 0) : 154.4 (s C-2)
- 7 10 : unstable product : MS m/e (relative intensity) : M⁺· 292 (48), 135 (100), 107 (40); $\overline{UV} \ \lambda^{EtOH}$ (qualitative) : 225, 258, 279 nm ; NaBH4 reduction in methanol gave the dihydroderivative, MS m/e (relative intensity) : M⁺· 294 (100), 158 (48), 135 (92), 107 (20) ; UV $\lambda \stackrel{\text{EtOH}}{\text{max}}$ (qualitative) ; 256, 306 nm ; ¹H NMR (CDC1₃, 240 MHz, TMS $\delta = 0$) : 2.65 (NCH₃).
- 8 G. COSTA, C. RICHE and H.-P. HUSSON, Tetrahedron, 1977, 33, 315-320.
- 9 A. BUZAS, C. RETOURNE, J.-P. JACQUET and G. LAVIELLE, <u>Heterocycles</u>, 1977, <u>6</u>, 1307.
- 10 L. DUHAMEL and J.-M. POIRIER, J. Org. Chem., 1979, 44, 3576-3578 and previous work herein cited.
- 11 H.-P. HUSSON, L. CHEVOLOT, Y. LANGLOIS, C. THAL and P. POTIER, J. C. S. Chem. Comm., 1972, 929-931.
- 12 D.S. GRIERSON, M. HARRIS and H.-P. HUSSON, J. Am. Chem. Soc., 1980, 102, 1064-1082.
- 13 <u>7</u>: amorphous; MS m/e (relative intensity): M⁺ 379 (50), 214 (100); UV λ EtOH (qualitative); 226, 298, 327 nm. ¹H NMR (CDCl₃, 400 MHz, TMS δ = 0): 3.51 (d, C-3 <u>H</u>), 3.74 (s, CO₂CH₃), 4.05 (s, C-21 <u>H</u>); ¹³C NMR (CDCl₃, 15.08 MHz, TMS δ = 0): 61.8 (d, C-21), 115.8 (s C=N).
- 14 11 : amorphous; MS m/e (relative intensity) : M^{+} 644 (75), 508 (72), 379 (100) ; $\overline{UV} \quad \lambda EtOH$ (quantitative , log ε) : 236 shoulder, 252 (4), 298 (4.14), 324 (4.18) nm ; ¹H NMR (CDC1₃, 240 MHz, TMS δ = 0) : 0.57 (t, C-18' H₃), 1 (t, C-18 H₃), 2.86 (s, N-CH₃), 3.79 (s, CO₂CH₃) - ¹³C NMR (CDC1₃, 15.08 MHz, TMS δ = 0) : 33.8 (d, C-16'), 35.3 (t, C-6'), 56.8 (d, C-21), 72.5 (2d, C-3, C-21'), 75.6 (s, C-20), 104.1 (s, C-2').

15 - We thank Omnichem (Louvain-la-Neuve, Belgium) for the gift of tabersonine.

(Received in France 1 December 1980)